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ABSTRACT 

In this paper we explore the connection between Weierstrass points of subspaces 
of the holomorphic differentials and the geometry of the canonical curve in 
PC g-I . In particular, we consider non-hyperelliptic Riemann surfaces with invo- 
lution and the Weierstrass points of the -1 eigenspace of the holomorphic differ- 
entials. The case of coverings of a torus is considered in detail. 

1. Introduction 

The current  paper  originated as an a t tempt  to unders tand the following situa- 

tion. I f  S is a non-hyperelliptic compact  Riemann surface o f  genus 3, then the ca- 

nonical curve representing S is a quartic in P C  2. It is well known that such a curve 

has 28 bitangents;  see, for  example, [3]. Examples can be constructed where 4 o f  

these bitangents pass through a c o m m o n  point  and the 8 points o f  bi tangency are 

the intersection o f  the curve with a homogeneous  quadric.  

It is easy to see that  any non-hyperell iptic surface S o f  genus 3 which is a 

branched two-sheeted cover p o f  a torus X satisfies the above condition. In this in- 

t roduct ion  we shall sketch the p r o o f  o f  this assertion. In (the remainder  of)  this 

paper  we generalize this result and hence offer  a (possible) explanat ion o f  what  

really lies behind it. 

I f  S is a non-hyperell iptic surface o f  genus 3 and S admits  a conformal  involu- 

t ion E,  then it follows that  E has precisely 4 fixed points.  This is a consequence 

o f  the fact that  on  a surface o f  genus 3, a conformal  involution can have either 0, 
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4 or 8 fixed points. If the surface has an involution with 0 or 8 fixed points, then 

it is hyperelliptic. (If S had a fixed point free involution, then it would cover a sur- 

face of genus 2. An unramified two-sheeted cover of a surface of genus 2 must be 

hyperelliptic. This result is a special case of the theorem of [2]; see [4] for an ele- 

gant and elementary proof of this fact.) 

Elementary considerations show that we can choose a basis for the holomorphic 

differentials on the surface S so that one of the basis elements (say, 0) is E-invari- 

ant and the other two basis elements ( ~ ,  o~2) are anti-invariant under the involu- 

tion. The divisor of the invariant differential is P I " ' "  P4, where the points Pj, 

j -- 1 , . . .  ,4, are the fixed points of  the involution E. The non-hyperellipticity of 

S is enough to guarantee that there is no point on S where two linearly indepen- 

dent anti-invariant differentials vanish simultaneously (see Lemma 2); so that f = 

601//(.02 is an E-invariant function of degree 4 on S. 

The fiber f - l ( a )  over any point c~ on the sphere C = C Lt [oo} is the divisor of 

an anti-invariant holomorphic differential and is therefore canonical and invari- 

ant. The m a p f  has 12 branch points (counting multiplicities). A simple argument 

shows that f is branched at each fixed point P of E, the branch number of the map 

at a fixed point must be odd (because the order of the zero of an anti-invariant dif- 

ferential at a fixed point is even; see Lemma 1); so that the branch number o f f  

at a fixed point of E must be 1 or 3. It thus follows that either f has branch num- 

ber 3 at each of the 4 fixed points of E or f is branched at some non-fixed point 

Q of E. It follows (because of the invariance o f f )  that in the latter c a s e f  is also 

branched at E(Q). From these simple observations, we see that the divisors 

f - 1  (a)  that contain multiple points (corresponding to branch values oL) must be 
of the form (i) p4 for a fixed point P of E, or (ii) p2p2 for two distinct fixed 

points Pl and P2 of E, or (iii) p2QE(Q) with E(P) = P and E(Q) ~ Q or (iv) 

Q2E(Q)2 with Q not fixed by E. 

Not all of  the above possibilities can occur. If case (ii) occurred, then there 

would exist on S an anti-invariant differential co with (co) = p2p~. Hence the di- 

visor of the function 0/o~ would be P3P4/PI P2 and S would be hyperelliptic con- 

trary to hypothesis. It is also impossible for all the branching to be accounted for 

by case (iii); the maximum contribution to the total branch number f o r f  from such 

branching is 4. 

It follows from the above considerations that there are 4 distinct E-inequivalent 

points Qj (some of these may be fixed points of E) with the property that the di- 

visor Dj = Q2E(Qj)2 =f- i  (f(Qj)) is canonical and in fact the divisor of an anti- 

invariant holomorphic differential O~Qj on S. We shall show shortly that these 4 

differentials determine the 4 bitangents to the canonical curve which pass through 
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a common point. Such a bitangent is degenerate and a tangent when a Qj is a 

fixed point of  E. We embed the surface S into projective space PC 2 using the 

holomorphic differentials of  the first kind (to obtain the canonical (model of  the) 

curve). Perfectly good affine coordinates for the image of  a point P E S are given 

as (0 (P) ,  0)~ (P) ,  0) 2 ( P ) )  .~" Let (z0, z~, z2) denote the usual affine coordinates on 

PC 2. Choose constants ay, bj so that 0)oj = ajoJl + by0)2. Then the hyperplane 

ayz~ + bjz2 = 0 intersects the canonical curve exactly in the divisor Dj and there- 

fore corresponds to a bitangent which passes through the point (1,0,0). 

We have almost completed our story. To continue, observe that the invariant 

function 0)Q,/0)02 projects to a meromorphic function on X with divisor p ( Q 2 ) /  

p(Qg) .  If we now normalize the torus X b y  letting p (Ql )  = 0, then the Ip(Qi) ,  

j = 2,3,4} are the other three points of  order two. This follows from the fact that 

0)Qj/0)O, is an invariant function on S whose projection to X has divisor p (Oj)2/ 

p (QI)2. Finally, consider the invariant function on S defined by 0)~/0 2. It pro- 

jects to a meromorphic function with divisor p (Ql)4/p (Pl)  • • • p (P4). From this 

we conclude that the divisors p ( P I ) " "  p (P4) and p (Q1) " '" p (Q4) are equivalent. 

Thus the divisors Q l" '"  Q 4 E ( Q 1 ) ' " E ( Q 4 )  and p E . . . p 2  on S are also equivalent 

and this shows that the former is the divisor of  a holomorphic quadratic differen- 

tial on S. The last statement is equivalent to the assertion in the first paragraph that 

the 8 points of  bitangency lie on a homogeneous quadric. 

In the general case, we are studying a closed non-hyperelliptic surface S of  ge- 

nus g > 2 that is a ramified covering of  a compact surface X of genus p _> 1 and 

view S as the canonical curve sitting in PC g-l. There exists a holomorphic invo- 

lution E on S with X = S / ( E ) .  The involution also acts on PC g-I yielding two 

non-intersecting invariant subspaces PC p-I and PC g-p-1. On each of these spaces 

E acts as the identity. From the Weierstrass points for the (g - p)-dimensional 

space of E anti-invariant holomorphic differentials of the first kind on S, we con- 

struct a finite non-empty collection of  special pairs of  points on the surface S. 

There are at most p ( g  - p ) 2  special pairs.~t Each special pair of  points determines 

a finite-dimensional family of hyperplanes in PC g-l. Each hyperplane intersects 

the curve S at the special points with high multiplicity (at least g - p ) .  The hyper- 

plane generally also intersects the curve at 2p - 2 other points. All the hyperplanes 

contain the fixed PC p-l mentioned earlier. 

?When discussing projective embeddings, we will often identify a differential ¢0 = h(z) dz on S with 
the function h that represents it in terms of the local coordinate z. This will not cause any damage as 
long as we use the same local coordinate for all the differentials used to embed the surface. 

~tSharp estimates for the minimum number of special pairs are quite delicate. This topic is currently 
under study by the authors. 
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The general situation simplifies considerably for p = 1. In this case, the dimen- 

sion of  each family of  hyperplanes is zero (each family consists of  a single hyper- 

plane) and there are exactly (g - 1) 2 pairs of  special points. These pairs may 

degenerate in the sense that the two points in the pair coincide. Each hyperplane 

intersects the curve at precisely the special points with multiplicity g - 1 when the 

pair is non-degenerate. We obtain characterizations of the divisor of special points 

in terms of  the Jacobian variety of  and the Riemann theta function on X. 

Our work is related to a paper of  Riera and Rodriguez [4] who study the case 

g = 2 and p = 1. These authors call attention to some work of  Poincar6 on the 

same subject and promise to consider g = 3 and 4 in a future paper. Whereas [4] 

considers in detail the Fuchsian uniformization of genus 2 surfaces with nontrivial 

involutions (in addition to the hyperelliptic involution), the present work explores 

the geometry of  the canonical curve of  non-hyperelliptic surfaces (of arbitrary ge- 

nus) with involutions. 

2. Branched two-sheeted covers 

We shall be studying two-sheeted holomorphic covers 

p:S-~ X 

of  Riemann surfaces. To fix notation, we let S and X be compact Riemann sur- 

faces of  genus g and p, respectively, p a degree-two holomorphic map between 

them, branched at the 2k points P1,P2 . . . . .  P2k. Riemann-Hurwitz tells us that 

g = 2p + k - 1. We define the ramification divisor ofp  by Dp = p(PI )p(P2)""  

p (PEk). The surface S admits a conformal involution, E, which satisfies p o E = p 

and fixes the branch points Pi, i = 1 . . . . .  2k. 

The points of  order two in J (X) ,  the Jacobian variety of  the Riemann surface 

X, classify the possible branched two-sheeted covers S of  X which have the given 

ramification divisor. For the convenience of  the reader, we proceed to describe this 

well-known classification. I f p  = 0 (then the surface S is hyperelliptic and) we re- 

gard J ( X )  to be a point. 

Let k be a non-negative integer and choose 2k distinct points xl ,x2 . . . . .  X2k on 

X. Let D = Xl • • • x2k. The degree-two covers of  X with ramification divisor D are 

in one-to-one correspondence with certain index-two subgroups of  IIl (X  - D),  

the fundamental group of  the Riemann surface X punctured at the points in the 

ramification divisor D. 

Let [ 3'~ . . . . .  3'p; ~ i . . . . .  ~p J be a canonical homotopy basis for X based at some 

point x0 that avoids the points xj, j = 1 . . . . .  2k, and let cy, j = 1 . . . . .  2k, be a path 
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emanating from x0 surrounding the point xj and returning to the point Xo. We 

have described generators for the fundamental group of  the surface X punctured 

at the points in the ramification divisor. This group, II1 (X  - D),  is generated by 

the above 2p + 2k paths subject to the single defining relation 

p 2 k  

i=l j= l  

where [3,,8] = 787-~ i  - l  is the commutator of  7 and 8. In order to describe all the 

smooth degree-two covers of X - D, it is sufficient to find all index-two subgroups 

of  the group generated by these paths, and therefore to find all homomorphisms 

of  this group onto the group with two elements Z2. The kernels of  these homo- 

morphisms are the desired subgroups. 

Each homomorphism is determined by its action on the generators and if we 

want to have branching at each of  the 2k points in D, we need that the image of  

each cj be 1. The images of  the 7i and ~i can be arbitrary (we are using the fact 

that 2k is even). We can therefore associate with the homomorphism h from the 

fundamental group of  X - D to the group of  order 2, the symbol 

[ h(7,) h(Tp) ]. . . . . .  
h(~l),. ,h(~;) 

This symbol can be identified with the point of  order 2 in J(X),  hp = 
!x,i=p (h(6i)ei + h(7g)Tri), where e i and 7r ~ are the respective i-th columns of  2 / ' ~  i =  I 

the identity matrix and the period matrix 7r (whose (i,j)-entry is ~rij = f~, 0:, where 

{Oi;i -- 1 . . . . .  p} is the basis of  the holomorphic differentials dual to the given 

canonical homology basis). For the sake of definiteness we use the same point x0 

as both a base point for the fundamental group of  X - D and for embedding X 

into its Jacobian variety. 

Function theoretically, we are constructing the cover S on which a certain mul- 

tivalued meromorphic f u n c t i o n f  on X -  D becomes single-valued. The function 

has a square root singularity at each point of  the ramification divisor and changes 

sign over the appropriate paths according to the homomorphism h. Existence of  

such a function clearly leads to a two-sheeted cover S. Conversely, the existence 

of  S defines such a multivalued function f as we shall see in the next section (where 

we also derive the connection between the function f and the point hp E J(X)). 

3. Anti-invariant differentials 

We continue with the situation treated in the previous section; that is, S is a 

closed Riemann surface of  genus g = 2p + k - 1 with a conformal involution E 
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with 2k fixed points (thus the quotient surface X = S / ( E )  has genus p ) .  It is well 

known that the vector space ~ = 6~(S) of  holomorphic differentials on S decom- 

poses into the direct sum of two subspaces; the E-invariant subspace which we shall 

denote by t~ + = ~ :  = t~:(S) and the E-anti-invariant space which we shall denote 

by ~ -  = ~ :  = ~ ( S ) .  

The space t~ + has (complex) dimension p and consists o f  the lifts to S of  the 

holomorphic differentials on X. Each 0 E t~ + vanishes at each of the fixed points 

Pi of  E. Moreover,  the vanishing is always to odd order. In fact, we have the 

following 

LEMMA 1. Let o~ be an anti-invariant (respectively, &variant) meromorphic dif- 

ferential on S and let P be a f ixed point  o f  E, then ordp o~ is even (odd).  

PROOF. Choose a local parameter  z vanishing at P so that in terms of  this co- 

ordinate, E is represented by z ~ - z .  Let ~ be represented by w(z)  dz. If  o~ is anti- 

invariant under E, then w ( E ( z ) ) E ' ( z )  = - w ( z ) .  This means that w ( - z )  = w(z)  

(that is, w is an even function of the local coordinate z) and shows that o~ has even 

order at any fixed point o f  E. The argument  for invariant differentials is similar. 

REMARK. Let D = Dp = x l . . . x 2 ~  be the ramification divisor of  the natural 

cover p : S ~ X, where xi = P(Pi).  At this point we can construct a multivalued 

function on X - D that determines the cover p. I f  X is of  genus 0 and xi ¢ co for 

all i, then we can use the function 

f ( z )  = (Z - xi), z ~ C .  

I f  one of  the xi equals infinity, then the corresponding term is omitted from the 

above product.  I f p  > 0, we let 0 be a non-trivial invariant holomorphic differen- 

tial on S and let o~ be a non-trivial anti-invariant holomorphic differential on S (we 

have excluded the case p = 1 and k = 0 (in which case g = 1 also), which is left to 

the reader). The anti-invariant meromorphic  function f = 0A0 on S - p - l ( D )  

projects to a multivalued function F on X - D that defines the cover. We must 

check that continuing F along curves leads to the defining homomorphism h for 

the cover. It is obvious from the Lemma that F has square root singularities at the 

branch values of  p and hence continuation of  F along the curves ci, i = 1 , . . .  ,2k 

(defined in the previous section) leads to a change of sign. The anti-invariance of  

the function f on S shows that F changes sign after continuation along a closed 

path on X - D if and only if the path lifts to an open path in S (that is, if and only 
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if the homomorphism h has value 1 on this closed path). One must also check that 

the homomorphism h is independent of the choices made. If one chooses arbitrary 

non-trivial 01 E ($~ and c01 E t~i:, then the ratiof2/f,  where f2 = 02/0)2 ,  is E-invari- 

ant and projects to a single-valued function on X. Hence Fl,  the projection off2 

to X, and F induce  the same homomorphism h from II2 ( X -  D) to Z2. We will 

identify the homomorphism h with the point hp E J ( X )  by Lemma 4. 

An interesting invariant attached to a subspace of the space of holomorphic dif- 

ferentials on a compact Riemann surface is the set of Weierstrasspoints of the sub- 

space. These are defined as the zeros of the Wronskian of  any basis for the 

subspace. Let d be a positive integer. It is easy to see that for a d-dimensional space 

63 of holomorphic differentials on S, a point P is a Weierstrass point for 63 if and 

only if there exists a 0 ~ 63 that vanishes at P t o  order at least d. Let 02 . . . .  ,Od be 

a basis for 63. We shall denote the Wronskian for this basis by 

( 

W = W(01 . . . . .  Od) = det / 

O1 o l o  Od 

l 0~-2~ . . .  0~-~  

In the above we have identified the differential 0 with its expression O(z)dz  

in terms of a local coordinate z. It should be checked that W is a holomorphic 

d ( d  + 1)/2 differential and hence its degree is d ( d  + 1)(g - 1). This latter num- 

ber is precisely the number of Weierstrass points, counting multiplicities, of 63. For 

any P E S, ordp W is the weight of the Weierstrass point P (see [1, III.5.8] for the 

definition). 

Assume f rom now on that p > 0 and i f  p = l, that k > 0; it follows that 

g _> 2. We turn our attention now to the Weierstrass points of 6~-. This space 

has (positive, because of the above restriction) dimension d = g - p = p + k - 1 

and hence the number of  Weierstrass points of 6~-, counting multiplicities, is 

( g - p ) ( g - p  + l ) ( g -  1) = (p + k -  1)(p + k ) ( 2 p -  2 + k). 

LEMMA 2. (a) Each f ixed point  o f  E is a Weierstrass point  o f  (~- o f  weight at 

least ( g - p ) ( g - p  - 1)/2 = (p + k -  1)(p + k -  2)/2. 

(b) For each P E S, there is an o~ E (~- that does not vanish at P except when 

S is hyperelliptic and k = 0 or 1. 

(c) I f  S is hyperelliptic, k = 0 or l, and H is the hyperelliptic involution on S, 

then every element o f  ~ -  vanishes at the 4 - 2k  f ixed points o f  the involution 

E o H .  
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(d) Both 2g - 2 and 2g - 4 cannot be orders of  zeros at a fixed point P of E of 

elements of  (~-. Hence the weight of  P with respect to the space t~- is at most 

2 ( g -  1 ) ( d -  1) - ] d ( d -  1) + 2. 

PROOF. We begin with (b). Every E-invariant differential necessarily vanishes 

at each fixed point o f  E. It thus follows that if  P is a fixed point o f  E, not all 

anti-invariant differentials can vanish at P. I f  P is not a fixed point of  E, and if 

all anti-invariant differentials vanish at P, they would also have to vanish at E(P).  

Furthermore,  we can find a p - 1 dimensional subspace of invariant differentials 

which will also vanish at P and E(P) .  This implies that we have a 2p + k - 2 = 

g - I dimensional space of  holomorphic differentials on S vanishing at the points 

P and E(P).  This of  course implies that S is hyperelliptic and that E(P) = H(P),  

where H is the hyperelliptic involution on S. 

Let us assume now that S is hyperelliptic as above. We have seen that the invo- 

lution E o H fixes the point P. The action of H on 6t is as minus the identity. It fol- 

lows that 6t~ = 6t~:o n and ~i:  = 6~o , .  Since the order of  an invariant differential 

at a fixed point of  an involution (E  o H,  in this case) must be odd, every element 

of  ~ :  must vanish at each fixed point o f  E °H.  We must determine which hyper- 

elliptic surfaces can occur. The Lefschetz fixed point formula tells us that the num- 

ber of  fixed points of  E o H i s  2(1 - t r E . H )  = 2(2 - k).  Thus k = 0, 1 or 2 are 

the only possibilities. The case k = 2 is eliminated because E o H must have fixed 

points. Thus we are exactly in the excluded situation of  the lemma. This proves 

parts (b) and (c) of  the lemma. 

In order to obtain (a), we observe that as a consequence of  Lemma 1, the order 

of  vanishing of an element of  6~- at a fixed point of  E is even. It thus follows that 

the lowest possible orders of  vanishing are 0 ,2 ,4 , . . .  ,2(p  + k - 2) = 2(d - 1). For 

part  (d), assume that there existed anti- invariant holomorphic  forms w~ that  

vanished at P to order 2g - 2 and o:2 that vanished to order 2g - 4. Then the 

E-invariant function w2/o:1 would be of  degree 2 (its only pole would be at P and 

then this pole would be of  order 2). This function defines a degree 1 function 

on X, contradicting the fact that X has positive genus. 

Now to compute the highest possible weight of  the fixed point P, we note that 

the largest collection of  orders of  zeros at this point of  anti-invariant differentials 

are 

(1) O , 2 ( g -  d ) , 2 ( g -  d + 1) . . . .  , 2 ( g -  3 ) , 2 ( g -  1). 

Subtracting f rom this sum the sum of  the lowest possible orders ( d ( d -  1)/2), we 

obtain the maximum possible weight of  the Weierstrass point P for ~ - .  
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REu_~a~s. (1) For k > 2, each fixed point P of  E is a classical Weierstrass point 

on S (that is, a Weierstrass point for t~) since there exists on S an element of  

i f -  C (~ which vanishes at P to order at least 2 (p  + k - 2) > g - 1. This is a well- 

known fact. See, for example, [1, Theorem V.l.7]. 

(2) Each element of  t~ + vanishes at the fixed points of E. It is obvious that for 

each Q E S that is not fixed by E, there is a 0 E 6t + that does not vanish at Q (we 

lift an element of  ~ ( x )  that does not vanish at p(Q)) .  

(3) Each of  the excluded cases actually occurs. Consider the hyperelliptic curve 

S of  genus g given by 

g+l 
w2= r[ (Z 2 -  e2), 

i=l  

where the e 2, 2 . . . .  e~+l are g + 1 distinct non-zero complex numbers. The hyperel- 

liptic involution H is given by the map (z, w) ~ ( z , - w )  and the involution E .  H 

is given by (z, w) ~ ( - z ,  w). The quotient of  S by E .  H is the curve 

g+l 
w 2= IX ( z - e 2 ) ,  

i=l  

of  genus [g/2] (here [. ] is the "integral part" function) and hence E o H has 4 (2) 

fixed points when g is odd (even). If  we now consider the involution E given by 

(z, w) ~ ( - z , - w )  it will have no fixed points when g is odd and two fixed points 

when g is even. 

(4) F o r p  = 1 the result of  (d) is sharp. We shall see after the proof  of  Lemma 6 

that for p > 1 it is necessary that k = 1 in order for the upper bound to be attained. 

Even in this case there will be further restrictions. 

The divisors of  differentials in t~- or (~+ are E-invariant. A Weierstrass point 

Q of  t~- will be called special if there exists a differential (the space of  such dif- 

ferentials may have dimension bigger than 1) o:<2 E (~- whose divisor is of  the 

form QP+k-1E(Q)P+k-IAE(A), where A is an integral divisor of  degree p - 1. 

Note that we do not exclude the possibility of  Q appearing also in the support of  

A or E(A) .  We will call o:Q a special differential corresponding to the point Q. Ev- 

ery Weierstrass point of  t~- which is not a fixed point of  E is special; fixed points 

of  E may or may not be special. There must exist special Weierstrass points. Oth- 

erwise, only the fixed points of  E would be Weierstrass points and each would be 

of  minimal weight. The total weight of the Weierstrass points would then be 

( p + k - 1 ) ( p + k - 2 ) k = ( p + k - 1 ) ( p + k ) ( 2 p - 2 + k ) ,  

which would imply that p + k = 1, a case we have excluded. 
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LEMMA 3. Let Q be a special Weierstrass point for (~- and assume that Q is 

not a fixed point of  E. Then it is not possible for there to exist anti-invariant 

differentials with zeros at Q of orders g - 2 and g - 1. Hence the maximum weight 

of  such a point (with respect to (~-) is at most d(p  - 1) + (2 - p ) .  

PROOF. The proof  is similar to the proof  of  the previous lemma and uses the 

fact that for an anti-invariant differential o~, we have ord 0 o~ = ordEtQj ~o. The de- 

tails are left to the reader. 

REMARK. The lemma is clearly sharp for p = 1. See also Remark 4 above. 

For Q E S, we define rQ to be the weight of  the point Q with respect to the 

space of  anti-invariant differentials (r 0 = ord o W-, where W -  is the Wronskian 

for ~ - ) .  If Q is a Weierstrass point for ~ - ,  then so is E(Q).  If Q is not fixed by 

E, then 

70 + reto) < 2d(p - 1) + 2(2 - p ) .  

Similarly, for a fixed point P of  E, we have 

r p -  ½ d ( d -  1) _ 2 ( g -  l ) ( d -  1) - 2 d ( d -  1) + 2 = 2 d ( p -  1) + 2 ( 2 - p ) .  

If Q~ and Q2 are two distinct special Weierstrass points of 6~- or if Q2 = E(Ql ) 

or if Q~ = Q2 and we choose (if possible) O~o, not to be a multiple of  coQ2, then 

o~0,/o~0~ is a non-constant invariant function on S and therefore projects to a 

function on X. Its divisor on X will be p (QI) p+k-10 (A l )/P (O2)P+k-l# (A2), with 

the obvious meaning for A i, i = 1,2. By Abel's theorem, the image of  this divisor 

in the Jacobian variety of X is the point zero. Hence the divisors p (Qi)P+k-lP (A i), 

with the Qi ranging over the special Weierstrass points of  ~ : ,  are equivalent. We 

proceed to identify their image in the Jacobian variety J (X) .  

4. The embedding into the Jacobian variety 

We continue with the notation of  the previous section and concentrate on the 

quotient surface X = S / (E ) .  Fix a point x0 E X and let • = 4'xo denote the map 

of  X into its Jacobian variety J ( X )  via integration from the base point x0. Nor- 

mally one studies the map ~ from divisors of  degree zero on X into the Jacobian 

variety J (X) .  We need to consider a more general class of  divisors on X of  the 

form I-[~'=~ y7 j, where as usual yj E X, but we permit o 9 to be a half-integer when- 

ever yj is a point in the ramification divisor D and require o(i to be an integer 

otherwise. We also require that ~ j ~ 1 %  = 0. The divisor (F) of  a multivalued 
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function F that defines the cover p : S ~ X is precisely of  this type. We must exer- 

cise some care in defining the map • on these more general divisors. 

We represent our surface X as a 4p-sided polygon & with identifications. The 

sides of  CP represent the curves in the canonical homotopy basis {'tl . . . . .  "yp; 

~1 . . . . .  ~p] for X with the vertices of  6 ~ representing the base point Xo (we select 

one of  these vertices and consider it as a base point for integration). We choose the 

polygon so that the points {x~ . . . . .  XEk} in the ramification divisor are in the in- 

terior of  CP and hence so are the curves {c~,... ,CEkl around these punctures on 

X - D. When integrating a differential on a path from the base point Xo to a 

point xj, j = 1 . . . . .  2k, we will insist that the curve along which we integrate stays 

inside CP except for the end point x0. 

LEMMA 4. Let F be a multivalued function defining the cover p and hp the 

point o f  order 2 in J ( X )  corresponding to the cover p. Then we have ~((F)) = hp. 

n ~j PROOF. We adopt the notation of  §2. Let (F) = R j=l Y) , where yj E X, aj is 

a half-integer whenever yj is a point in the ramification divisor D and c~ i is an in- 

teger otherwise with Z]=~ o~i = 0. The/- th  component of  the vector 4,((F)) is given 

by ~ j ~  aj f~Y~ 01. To evaluate this expression we note that 

n p 

dF/F = Y~, otigylx o + )-], ~iOi, 
i=l i=l 

where ryxt is the unique abelian differential of  the third kind on X with simple 

poles at y and x (and regular elsewhere), residue + 1 at y, residue - 1  at x and 

fvl ryx = 0 for 1 = 1 . . . . .  p (this last condition must be interpreted on the curve 

rather than homotopy level) and/3i is a complex constant for i = 1 . . . . .  p. 

We begin by evaluating both sides of  the last equation. First, 

~ d F / F  = logF(end point o f -  logF(initial point of  "Yi) "y/). 
I 

The initial and terminal points of  the above integration are, of  course, the same 

(on the surface X, not the polygon (P). However, on traversing the path 7t the 

multivalued function F is multiplied by the constant ( - 1 )  hcv'l. Here h is the 

homomorphism from the fundamental group of X - D into Z2 defining the cover 

p. Hence we see that 

f~ dF/F = 7rt(h('yl) + 2mr), 
I 

tWe are using the symbol ¢Q to denote weights of Weierstrass points (on S) and the symbol ryx to 
denote abelian differentials (on X). This abuse of symbols should not cause any confusion. 



180 H.M. FARKAS AND I. KRA Isr. J. Math. 

for some integer mr. Similarly, 

~l d F / F  = ~t(h  (61) + 2nl), 

for some integer nt. Second, 

and 

OliTyix o "[- ~_j ~iOi : ~,  ai %xo + 13i~il = 27rt cli Oi + fJiTrit. 
I "= i=l i=l I i=1 i-=l ~'Xo i=l 

The last equality is a consequence of  the bilinear relations of  Riemann. Compar- 

ing the two sets of  integrals, we see that 

~i  : 7~t (h(~[ i )  + 2mi), 

and 

i = 1 . . . . .  p, 

f Y i  1 P 
cti Ot = X ((h(~l) + 2nl) - ~ (h(T/) + 2mi)lril). 

i=1 VXo Z,, i=1 

This completes the proof of the lemma. The argument is a mixture of known meth- 

ods. See, for example, [1, III.6.3 and III.9.15]. 

At this point we can give an alternate description of  the space (~- in terms of  

multivalued differentials. We begin by recalling that an E-invariant meromorphic 

function f on S corresponds to a meromorphic function F on X with f = Fop .  I f 

2k 

(F) : r f  x:, fl yf , 
i=1 j = l  

with xi ~ )9 for all pairs of indices i and j ,  the a; are integers, the/3j are non-zero 

integers with 

then 

2k 

i=! j = l  

2k n n 

(/) = lI  P P  1] 09 ~ 1-[ e(OA ~, 
i=l j = l  y=J 
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where o (Qj) = yj. Similarly, an anti-invariant meromorphic function f on S is the 

lift of  a multivalued meromorphic  function F on X belonging to the character h 

on the fundamental  group X - D. (A function F belongs to a character h if con- 

tinuing F along the closed curve c on X -  D leads to (-1)n(C)F.) Note that the 

nature of  our character h forces F to have square root singularities at the points 

in the support of  D. The relation between (F) and ( f )  is identical to the one given 

for the invariant case with the one important  exception that each a j  is a half-in- 

teger and not an integer. 

Now every element 0 E (~:(S) is the lift of  a 0 E 6t(X).  I f  

2k 
= rlx i  yfJ, 

i=1 j= l  

with xi ~ Y1 for all pairs of  indices i and j ,  the ai are non-negative integers, the B; 

are positive integers with 

2k n 
Y] c~i + ~--] fl; = 2P - 2, 
i=1 j=l 

then 

2k 
( 0 )  = 1-[ p/2a,,+l f l  Ofj f l  E(Qj)[Jj, 

i=1 j= l  j= l  

where o(Qj) = yj. Note that 

2k 

~ (2a~ + l) + 2 Bj = 2(2p - 2) + 2k = 2g - 2. 
i=1 j= l  

Finally, the space t2i:(S) is the lift of  a space of  holomorphic Prym differentials 

on the surface X - D that belong to the character h and that are permitted to have 

half-order poles at the points in the ramification divisor. Again the relation be- 

tween the divisors of  the multivalued differential fl on X and its lift co to S is ex- 

actly as in the invariant case except that each ~j must be half-integer which is not 

an integer and at least - 1 / 2 .  Of  course, one may consider arbitrary multivalued 

differentials on X belonging to the character h. For these, we drop the condition 

on the bounds of  the exponents ~; and ~j. 

LEMMA 5. (a) Let fl be an arbitrary non-trivial meromorphic multivalued dif- 

ferential on X belonging to the character h. Then ff((f~)) = -2Kxo + hp, where hp 

is the half-period in J ( X )  determined by the cover and -2Kxo is the image in 

J ( X )  of  a canonical divisor on X. Conversely, i f  if) is a divisor on X of  degree 
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2p - 2 with @gD ) = -2Kxo + hp, then there exists a meromorphic multivalued 

differential f~ on X belonging to the character h with (f]) = if). 

(b) Let Q E S be a special Weierstrass point for  ~ with o~ 0 a corresponding 

differential. Write, as usual, (¢OQ) = QaAE(Q)aE(A) ,  where A is an integral di- 

visor on S o f  degree p - 1. Then 

@(p(Q)P+k-lp(A)) = ~(I,(Dp) - 2Kxo + hp, 

where Dp is the ramification divisor of  p. 

PROOF. Let F be a multivalued function defining the cover p. An arbitrary mul- 

tivalued meromorphic differential fl on X belonging to the character h may be writ- 

ten as fl = ~F, with ~ a meromorphic one form on X. The divisor Z = (~) is 

canonical and hence the first assertion of  the lemma is a consequence of  the pre- 

vious lemma. The converse to part (a) is easily established. For the second asser- 

tion, we note that the projection of  o~t2 to X has divisor p (Q)dp (A)1971/2. 

R E ~ K S .  (1) One can (and we do) choose for Kxo, the vector of  Riemann 

constants for the base point Xo. See [1, Chapter VI]. 

(2) If P E S is a Weierstrass point for ~ - ,  but P is not special, then we can find 

a ~ .  E a -  with (o~e) = PP+k-ZAE(P)P+k-2E(A) ,  where A is an integral divisor of  

degree p with P not appearing in A (of course, E ( P )  = P).  For these divisors we 

have 

@(p(P)P+k-2p(A)) = ~ @ ( D p )  - 2Kxo + hp. 

It is interesting to observe that one has a Riemann-Roch type theorem for the 

anti-invariant functions on S. We begin with some remarks. The order of  an anti- 

invariant function at a fixed point of  E is necessarily odd and the divisor of an anti- 

invariant function must be invariant under E. Every point in p-1 (Dp), the lift to 

S of  the ramification divisor, must necessarily appear (to a positive or negative 

power) in the divisor of  a non-trivial anti-invariant function. This last remark is 

a consequence of  the fact that for any anti-invariant function f ,  f - f ,  E = 2f; so 

that if the fixed point P of  E is not a pole o f f  it is necessarily a zero o f f .  

Let a be an integral divisor on S. We decompose a into asb where as is the 

largest (in the lexicographic ordering) E-invariant divisor less than or equal to a 

(which may be trivial) and b its complement relative to a. From our previous re- 

marks it is clear that if we denote by L_ [l /a]  the vector space of anti-invariant 

functions whose divisors are multiplies of  1/a and if we denote the dimension of  

L_[1/a] by r_[1/a], then r_[1/a] = r_[1/as]. 

The divisor as may have points of  the preimage of  the ramification divisor (that 
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is, fixed points of  E)  in its support. Denote these by the divisor p~l . . .  p~, where 

the otj are positive integers. If any of  the positive integers o~j is odd, increase it by 

one to obtain adjusted divisors a'  and a;. Clearly, a~ = cE(c)  for some integral 

divisor c on S and r_[1/as] = r_[1/as]. 

LEMMA 6. Let a be an integral divisor on S. Then 

r_[1/a] = r_[I/as] = ~deg(a~) - (p  + k -  1) + / - [ a S ] ,  

where i_ [ A ] is the dimension o f  the space o f  anti-invariant differentials whose di- 

visors are multiples o f  A. 

PROOF. The first equality has already been verified in the remarks preceding 

the statement of  the Lemma. It remains to explain the last equality. The vector 

space L[1/a~]T has a canonical decomposition as the direct sum of  subspaces of  

invariant and anti-invariant functions. The invariant functions in the space are pre- 

cisely those which are the lifts of  meromorphic functions from X and therefore 

their dimension is computed by the Riemann-Roch theorem (applied on X) to be 

r[1/p(c)] = ~deg(a~) - p  + 1 + i tp (c ) ] .  

The Riemann-Roch theorem on S gives 

r[1/a~] = deg(a~) - (2p + k -  l) + 1 + i[as]. 

The difference between r[l/a~] and r[ l /p(c)]  is r_[l /a].  To obtain the second 

equality in the lemma, use the fact that i[a~] = i_[a~] + i+[a~] and i+[a~] = 

i [p(c)].  

As an example we consider the divisor a = p2t, where P is an arbitrary fixed 

point of  E on S and I is a positive integer. The formula reads as follows: 

r_ = l -  (p  + k -  l) + i_[p211. 

We have already remarked that the order of  an anti-invariant function (differen- 

tial) at a fixed point of  E is necessarily odd (even) so that r_[1 /P  21-1] = 

r_ [1/P 2t] and i_ [p2t- l ]  = i_ [p2q .  It thus follows that 

r _ [  1, , ]  = l - ( p + k - 1 ) d - i _ [ p 2 / - 1 ] .  
Lp,,-, j 

1"We use standard notation as in [1, Chapter III] except that we have substituted square brackets for 
parentheses. 
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Furthermore,  it is also clear that if  I < 2k - 1 there are no non-trivial anti-invari- 

ant functions in L [ 1 / P  2t] (because such a function must vanish at each of  the 

2k - 1 other fixed points of  E) .  These ideas are helpful in the computation of  the 

weight of  a Weierstrass point for the anti-invariant differentials. 

The Weierstrass gap theorem on S asserts that there are precisely g = d + p non- 

gaps bigger than 1 and less than or equal to 2g. At a fixed point P of  E, these non- 

gaps have the following proper ty:  the odd non-gaps are non-gaps for  the 

anti-invariant functions and the even non-gaps are non-gaps for the invariant func- 

tions. This is seen by writing an arbitrary function as the sum of  an invariant and 

an anti-invariant function. Since by Lemma 6, r_ [1/P 2g] = p,  we find that in the 

sequence of  odd integers in {1,2 . . . . .  g J there are precisely p non-gaps and d gaps 

for the anti-invariant functions. Therefore in the corresponding sequence of  even 

integers there are precisely d non-gaps and p gaps for the invariant functions. 

With the aid of  Lemma 6 and the above observations, we can elaborate on our 

earlier remark concerning the sharpness of  (d) in Lemma 2. How can the upper 

bound given in Lemma 2 be attained? We observed in the proof  of  Lemma 2 that 

the upper bound is attained when the orders of  the zeros of  the basis for ( i -  

adapted to the point P are given by (1) in §3. This implies that i_ [p2(g-d)]  : 

d - 1 which by Lemma 6 implies that r_ [ I /P  2(g-d)-I ] = p - 1. Recalling that 

g - d = p ,  we conclude that for l = 2 . . . . .  p ,  r _ [ 1 / P  21-1 ] = l - 1 since there are 

only functions of  odd degree in these spaces. It thus follows that among these 

p - 1 odd integers 2l - 1 are non-gaps for the anti-invariant functions. For the re- 

mainder of  this section "non-gap"  means "at  P and with respect to the space of 

anti-invariant functions." In particular, 3 is a non-gap which gives us an anti- 

invariant function of degree 3. We have already remarked that all the other fixed 

points of  E are then necessarily zeros of  this function; which allows us to conclude 

that k _< 2. 

We have observed above that there are precisely p odd non-gaps _< 2g - 1 and 

we have thus far accounted for p - 1 of  them. The maximum weight is attained 

when 2g - 3 is t hep- th  and last non-gap (again by (1) and the fact that the orders 

of  the zeros of  the anti-invariant differentials are obtained by subtracting one from 

the list of  gaps). To complete the picture, it remains to consider the (possible) cases 

k = 1 and k = 2. We assume that p > 1 since the case p = 1 is clarified by Lemma 9. 

I f  k = l, then g = 2p and 2g - 3 = 4p - 3. It thus follows that 3 and 5 are both 

non-gaps. Since the product of  a triple of  anti-invariant functions is anti-invari- 

ant, it follows that 9,11,13 . . . . .  are all non-gaps as well. This leaves only 1 and 

7 as odd gaps and by our previous remarks d = 2. Since in our case d = p, we have 
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only the possibility o f p  = 2 and hence g = 4. There is, in fact, an example of  such 

a surface. It is the Riemann surface of  the algebraic curve 

w 3 = z ( z  2 - 1)(z 2 - )Q), with ~, ~ +1. 

This surface permits the involution (w, z) ~ ( - w , - z ) .  The fixed points are the two 

points z - l ( 0 )  and z -l(oo) whose weights are 5 and the remaining Weierstrass 

points for the anti-invariant differentials are the points lying over 1 , - 1 , ~ , , - ~  each 

of  weight 2. 

I f  k = 2, then we have g = 2p + 1. I f  a l s o p  _ 2, we find, as before, that d = 2; 

which now however implies 2 = d = p + 2 - 1 = p + 1 which is a contradiction. 

5. The canonical model of  the curve 

Use the notation and conventions of  the last two sections. We are now in a 

position to continue our investigation of  the Weierstrass points of  6t-. We have al- 

ready seen in Lemma 2 that the fixed points [Pi; i = 1 . . . . .  2k} of E are all Weier- 

strass points for the anti-invariant differentials and that the minimum weight of  

a fixed point is d ( d -  1)/2, where d = p  + k - 1 = dim 6ti:. Hence it makes sense 

to factor out f rom the divisor of  Weierstrass points the appropriate  power of  the 

lift of  the ramification divisor; namely, to factor out the divisor (P1"'" P2~) d(d-l)/2. 

LEMMA 7. Let D w -  denote the divisor o f  Weierstrass points o f  the anti- 

invariant differentials on S with each point repeated according to its multiplicity. 

Then we have 

D w -  = (P l ' "  "P2k)d(d-I)/2AE(A), 

where A is an integral divisor o f  degree pd  2. 

PROOF. It is clear that if Q is a zero of the Wronskian W -  of  a given order 

then so is E ( Q ) .  Thus the only part that needs verification concerns the order of  

W -  at a fixed point P of  E. We compute 

i=d  

ordp W -  = ~ ordpo~i - d ( d  - 1)/2, 
i = l  

where [o~i;i = 1 . . . . .  d} is a basis for ~ -  adapted to the point P. Since each 

ordpo~i is even, ordp W -  differs f rom d ( d  - 1)/2 by an even integer. 

Before stating our first theorem we need to introduce one more ingredient. We 

use the canonical embedding of  the surface S into PC g-I (assuming that S is not 
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hyperelliptic) and identify the surface with its canonical model. To be specific (for 

the purpose of  having good coordinates), we shall use a basis for R to consist of  

[01 . . . . .  Op;wl . . . . .  Wa], where 101 . . . . .  Opl is a basis for t ~  and Iwl . . . . .  OJa] is 

a basis for (~i:. There is a one-to-one correspondence between hyperplanes in 

projective space and abelian differentials of  the first kind on the surface. The 
g--l hyperplane HP 0 = ~i=o Xizi is identified with the abelian differential of  the first 

kind 

p--I p+d-I 
0 = ~ )kiOi+ 1 "~- ~ )kiO)i-p+lo 

i=O i=p 

Thus the intersection of S with HP consists of  the zeros of  the differential 0. The 

multiplicity of  an intersection point is the order of  vanishing of the differential at 

the point of  the curve. Similarly, the zeros in projective space of a homogeneous 

polynomial of  degree q can be identified with a holomorphic q-differential on the 

surface. 

To continue, we can identify PC g-l with the projective space of (complex) lines 

P6~ in the affine space 6~ of  holomorphic one forms on S. By duality, the points 

of  projective space may also be seen as hyperplanes in P6L In this context the ca- 

nonical map sends the point Q E S to the hyperplane fl[Q] of  differentials van- 

ishing at Q. The involution E acts on P6t via its action on ~.  In terms of the affine 

coordinates, 

E(zo . . . . .  Zg-l) = (Zo . . . . .  z v - l , -Zp  . . . . .  -Zg- l ) .  

The involution E acts as the identity on the non-empty complimentary subspaces 

PC p-I --- {(Zo . . . . .  Zg_l) E P e g - l ;  Zp = 0 . . . . .  Zg--lJ = P(~+ 

and 

PC g-p-I -- [(z0 . . . . .  Zg--l) E PUg-I; z0 = 0 . . . . .  zp-l] = PEt-. 

ThEOrEM 1. (a) The divisor o f  the Weierstrass points for  ( ~  is 

D w -  = (P l"""  P 2 k ) d ( d - 1 ) / 2 Q . l  " ' "  Qd2pE(Q1) ' ' '  E(Qd2p), 

where Q1 . . . . .  Qd2p are special Weierstrass points on S (and each special Weier- 

strass point is one o f  these or its image by E).  Further, Dw-  is the divisor of  an 

E-invariant ( anti-invariant ) holomorphic d ( d + 1 ) /2 differential on S when d is 

even (odd). 

(b) I f  p = 1, then (d = k and) the divisor QI"" "QkzE(Q1) "" "E(Qk 2) is 

k-canonical. 
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(c) Assume that S is not hyperelliptic and p = 1. In this case, for  each i, the 

points Qi and E(Qi) are the points o f  intersection of  multiplicity k o f  a hyper- 

plane in PC g-I with the embedded surface. All these hyperplanes pass through the 

point (1,0 . . . . .  0). 

(d) For non-hyperelliptic S and general p > O, the points Qi and E (Q~) are the 

points o f  intersection of  a hyperplane in PC g-I with the embedded surface of  mul- 

tiplicity at least d. All these hyperplanes contain the subspace of  PC p-~ spanned 

by the first p coordinates. 

PROOF. Part (a) has already been established except for the invariance prop- 

erty of Dw-  which is easily checked. 

To prove (b), we note that P~ . . .  PEk is a canonical divisor on S (since it is the 

divisor of the lift to S of a non-trivial holomorphic one form on the torus X) .  

Hence Dw-  / ( PI " " PEk ) k(k-j)/2 is k-canonical. 

For parts (c) and (d), we observe that under the canonical embedding a fixed 

point P of  the automorphism E gets mapped to 

(0 . . . .  O, ~ol (P) . . . . .  ~Od(P)) C=_ PC g-l. 

For each point Q~, there is a holomorphic differential in i f -  with divisor 

QiaE(Qi)dAE(A), where A is an integral divisor of degree (p - 1). There exist 

complex numbers Xj, j = 1 . . . . .  d, with ~a= l Xjcoj = ~00~ and therefore the hyper- 

plane ~a=l XjZj+p-i = 0 intersects the embedded curve in the divisor of ~0oi. This 

proves (d) since the hyperplane contains the subspace spanned by the first p coor- 

dinates. In particular, when p = 1, the hyperplane passes through the point 

(1,0 . . . . .  0). 

CAUTION. The points Q~ . . . . .  Qa2p include all the special Weierstrass points 

but need not be distinct and some of these points might be fixed points of E (that 

is, it is possible for P~ = Qj for some pair of indices i and j ) .  See below and also 

§6 and §7. 

We are interested in computing the number N of  distinct E-inequivalent points 

Qi appearing in the divisor D w - / ( P I "  "P2k) d(d-l)/2. We write this divisor as 

5)E(5)) (thus 5) = Q~ • • • Qd2p) and we want to determine the number of distinct 

points in D. By relabeling the indices we may assume that Q~ . . . . .  QN is the max- 

imal list of distinct entries in ~D. We now recall the discussion following the proof 

of Lemma 3. We know that d e g ~  = d2p and that the point Qj, j  = 1 . . . . .  N, has 

multiplicity roj in ~D if it is not fixed by E and multiplicity 1 (rQ~ - ~ d (d  - 1)) if 

it is fixed by E. It thus follows that 
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dEp (g _ p)2p 
N >  

d ( p - 1 ) + 2 - p  ( g - p - 1 ) ( p - l ) +  1' 

and hence for p = 1, N = (g - 1) 2 and for p = 2, N > 2(g - 2). 

We now define 

IzQ + 1 = i_[Q d] = i_[QdE(Q)  d] 

for a special Weierstrass point Q that is not fixed by E and 

/zp + 1 = i_ [p2d] 

for a special Weierstrass point P that is fixed by E. We need one more definition. 

A hyperplane intersects the curve symmetrically with respect to E if whenever R 

is a point of intersection of  multiplicity c~ so is E ( R ) .  Further, we require that the 

multiplicity of  a fixed point of  E in this intersection be even. This last condition 

is vacuously satisfied for p - 1. We have established part of  the following 

THEOREM 2. (a) Let S be a non-hyperelliptic surface. Let Q1 . . . . .  Qu be the list 

o f  distinct special E-inequivalent Weierstrass points for  (~-. Then each point  Q in 

this list determines a #Q-dimensional family o f  hyperplanes that contain P6t + and 

intersect the canonical curve S at the points Q and E ( Q) each with multiplicity at 

least d. The other intersections o f  the curve and the hyperplane are o f  multiplic- 

ity at most 2p - 2. (Note that d >- 2p - 2 as soon as g >_ 3p - 2. ) Further, N > 

d 2 p ( d ( p  - 1) + 2 - p) .  For p = 1, each ~Q = O, there are no other points o f  in- 

tersection o f  the hyperplane and the curve, and we have equality in the formula for  

N and in the multiplicity o f  the intersection points. 

(b) The special Weierstrass points account for  all hyperplanes that intersect the 

curve symmetrically with respect to E and have at least one non-fixed point in the 

intersection that has multiplicity at least d or one fixed point in the intersection with 

multiplicity at least 2d. 

PROOF. Part (a) has already been proven. For part (b), let HP be a hyperplane 

that intersects the curve symmetrically with high multiplicity. Then the correspond- 

ing differential 0 has divisor 

QdE(Q)dAp-I  E(  A )p-I. 

It follows that either 0 E 6t + or 0 E 6t-. But 0 cannot be in 6~ + because it vanishes 

to even order (possibly order zero) at the fixed points of  E. Thus 0 is an WQ for a 

special Weierstrass point for the space of  anti-invariant differentials. 
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CAUTION. In the statement of  part (a) of  the theorem, it may occur that Q is 

a fixed point of  E. In this case there is a single point of  intersection of  multiplic- 

ity 2d instead of  two points of  multiplicity d. 

There are relations between the numerical invariants associated to the special 

Weierstrass points. For example, it is easy to establish the following 

PROPOSITION 1. [ f  Q is not a fixed point o f  E, then 

1 < (#Q + 1) 2 < tO. 

PROOF. The equality i_[Q d] = s implies that the orders of  vanishing at Q 

of  the last s differentials in a basis for ~ -  adapted to Q are at least d, d + 1 . . . . .  

d + s - 1. The result follows easily from this observation. 

REMARK. If  we consider the particular case g = 3 and k = 2, then the content 

of  our last two theorems is that the canonical curve corresponding to the compact 

Riemann surface S has 4 bitangents which pass through a common point and the 

eight points of  bitangency QI . . . . .  Q4,E(QI) . . . . .  E(Q4) are the zeros of  a holo- 

morphic quadratic differential on S. It was precisely this result which was the mo- 

tivation for this paper as explained in the introduction. 

In the next section we shall identify the image in X under p of  the divisor 

QI"'" Qd2pE(QI ) '" "E(Qd2p). More accurately, we will identify the points p(Qi) 

on x and the divisor p ( Q l ) ' "  "P (Qa2p) of degree d2p on X. We have already seen 

in the proof  of  Lemma 5 that for any base point )Co on X, there is an integral di- 

visor Ai (on S) of  degree (p  - 1), such that 

¢~Xo(P(Qi)dp(Ai))  = ~¢bxo(D,) - 2Kxo + h~,. 

We shall characterize the relevant points on the Jacobian variety of  X in terms of  

the Riemann theta function on X. 

6. Theta funct ions  on Riemann  surfaces 

If X is a compact Riemann surface of  genus p _> 1 together with a canonical ho- 

mology basis 13'1 . . . . .  7p;tSl . . . . .  dip} and if {0l . . . . .  Op} is the dual basis for the 

holomorphic differentials on X, then we can associate with this data the Riemann 

theta function, 0, whose value at the point z E C p is O(z) = O(z,~r), where 7r is the 

matrix whose (i , j)-entry is 7rij = j'~j 0i. For the theory of  this function, we refer 

the reader to [1, Chapter VI]. In particular, the zeros of  the multivalued function 
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on the surface X (here e is an arbitrary point in C p) y ~ O(¢Pxo(Y) - e) have been 

studied extensively. 

THEOREM 3. Let  ct be a posi t ive integer and let e E C p. The mul t ivalued func -  

tion y ~ O(u~xo(Y)  - e) has precisely c~2p zeros on X (count ing mult ipl ici ty)  

when it does not  vanish identically. In this case, the divisor o f  zeros Y I ' "  .ya2p 

satisfies the equation 

oLe = ~xo(Yl" " "Yc~2p) + °t2Kxo • 

The mul t iva lued  func t ion  vanishes identically i f  and  only i f  i [x~'A] > 0, where A 

is an integral divisor o f  degree p - 1 chosen so that e = ~xo(A) + Kx 0. 

PROOF. The proof  of  the first half of  the theorem for ct = 1 is well known (see, 

for example, [1, Chapter VI]) and since the same proof  works for an arbitrary pos- 

itive integer or, we leave this as an exercise for the reader. We therefore only give 

the p roof  of  the second half. 

Assume that the function vanishes identically on X. It thus follows that for 

each point y on X ,  Ct~xo(Y) - e = - ~ x o ( D ( y ) )  - K~ o, where D ( y )  is an integral 

divisor of  degree p - 1 on X. Moreover,  e = ~ o  (A) + Kxo for some integral di- 

visor A of  degree p - 1, since e itself must be a zero of the function. We thus 

have oL¢bxo(y) -- 4~xo(A) -- Kxo = - ~ x o ( D ( Y ) )  - Kxo. In other words, we have 

~ x o ( Y ~ D ( y ) )  = ~xo(A) = ~xo(X~'A). 
It is a consequence of  Abel's theorem that the divisors y ' ~ D ( y )  and xS'A are 

equivalent. Thus for an arbitrary point y E X not in the support  of  xS'A, there is 

a n f E  L [ 1 / x ~ A ]  that vanishes at y to order at least o~. Since for a 3-dimensional 

space of  meromorphic functions on X the possible orders of  the functions at most 

points y are 0,1 . . . . .  3 - 1, we conclude that r [1 / x8A]  _> c~ + 1 and thus by 

Riemann-Roch that i[x~'A] > 1. Since the argument is clearly reversible, we have 

concluded the proof  of  the theorem. 

COROLLARY 1. I f  ot >_ p, then f o r  no po in t  e and no base po in t  Xo is it the case 

that Q ~ O( ~Oxo( Q)  - e) vanishes identically on X .  

PROOF. I f  ot _> p ,  then i[x~A] = 0 for every integral divisor A on X of  degree 

p - 1 .  

Consider the case ot = d = p + k - 1, e = hp + ½ cI, xo(Dp) - Kxo. According 

to our theorem and corollary, the multivalued function we are studying has 

(p  + k - 1)2p zeros on X. We claim that these are precisely the images under O of 

the points Q1 . . . . .  Qa2p listed in Theorem 1. 
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Recall that the points Qj in question are the points for which there exists a 

holomorphic differential in ( i -  with divisor 

Qf+k-I E ( Qj )P+k-t AQjE ( AQ) , 

with AQj an integral divisor of  degree p - 1.  In Lemma 5 we characterized the im- 

age of  these points under p. We can now refine our characterization. 

TrIvOREM 4. Let S be a compact Riemann surface o f  genus g = 2p + k - 1 

which is a two-sheeted branched cover p o f  X,  a compact Riemann surface o f  ge- 

nus p > O, with ramification divisor D = x n "  "x2k. Let Pi = p- t (x i ) ,  i = 1 . . . . .  2k. 

Furthermore, let h = hp be the point o f  order two in J ( X )  associated with the 

cover. Let D w -  = (Pl • • • P2k )dtd-l )/2Q1 "'" Qd2pE ( Ol ) • • • E ( Od2p) be the divisor 

o f  Weierstrass points of  (~-. Then the multivalued function 

y ~" O(dOxo(Y) - ~ CI'xo(Xl'' "x2k) + Kxo + h) 

does not vanish identically. A point y E X is a zero of  this function i f  and only i f  

y = p(Qi)  for  some i = 1 , . . .  ,d2p. 

PROOF. First note that according to Theorem 3 and its corollary, the expres- 

sion does not vanish identically on X provided k > 0. Assume that k > 0. We pro- 

ceed to identify the zeros of  the function. 

The Riemann vanishing theorem gives that y is a zero of the function if and only 

if dOxo(Y) - IOxo(Xn" "X2k) -1- Kxo + h = - ¢ x o ( A ( y ) )  - Kxo, where A(y )  is an 

integral divisor of  degree p - 1 which depends on y. It thus follows that  

Oxo(ydA(y)) = 1 <bxo(Xl. " .X2k ) __ 2Kxo + h. Hence y is indeed some o(Qi).  

Assume that k = 0 and the function vanished identically. The above argument 

shows that for each y E X, there would exist an integral divisor A(y )  of  degree 

p - 1 so that ,l~xo(yP-~A(y)) = -2Kxo + ho. This would give that i [yp- lA(y)]  = 

1 (by an argument similar to the one used in the proof  of  Theorem 3) which is a 

contradiction to the above equation since h p ,  0. 

It is interesting to note that with a little more work we can get a more interest- 

ing result. According to Theorem 3, the zero set [ Yi; i = 1 . . . . .  d2p } of  the theta 

function under consideration satisfies 

d d ( d  + 1) ( -2Kxo) .  ~bxo(Yl. . "ya2p) = ~ Cxo(Xl"' "X2k) -- dh + -------~-~ 

Let us first consider the case of  even d. In this case, since d2p - kd = 

d ( d  + 1)(p - 1), we see quite easily that YI"" " y d 2 p / ( X I  " " " X 2 k )  d / 2  is the divisor 
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o f  a meromorphic  d ( d  + 1)/2 differential. Its lift to S is therefore a d ( d  + 1)/2 

differential and its divisor on S is seen to be Q l ' "  Qd2pE(QI) "" "E(QdZp) X 

(PI'" "P2k) d(d-l)/2, where Qi E S is chosen so that p(Qi) = yi. I f  we take the case 

d odd, then we obtain an anti-invariant d ( d  + 1)/2 differential on S with the same 

divisor as in the even case. We leave the details for the reader. 

PROBLEM. From the multivalued function on X, given in the statement of  The- 

orem 4, we have constructed the divisor of  a holomorphic d ( d  + 1)/2 differential 

on S. The Wronskian W -  is also such a differential. Both of  these differentials 

vanish at the same points. However,  we have not been able to show that the or- 

ders of  the zeros at a given point coincide (except in special cases). 

7. Two-sheeted covers of  tori 

In this section we refine our previous results for the special case p = 1. Thus S 

is a compact  Riemann surface of  genus g _> 2 which is a branched two-sheeted 

cover p of  a torus X. The surface S then has an involution E with 2g - 2 fixed 

points Pl . . . . .  P 2 g - E -  

LEMMA 8. (a) Let P be a f i xed  point  o f  E. Then both 2g - 4 and 2g - 2 can- 

not occur in the sequence o f  orders o f  zeros at P o f  elements o f  (~-. Hence the se- 

quence o f  zeros is obtained by eliminating either 2g - 4 or 2g - 2 f r o m  

[0,2 . . . . .  2g - 4,2g - 21. 

I f  g = 2 or g = 3 and S is hyperelliptic, then 2g - 2 does not appear in the sequence. 

(b) Let Q be a special Weierstrass point  f o r  (~- that is not a f i xed  point  o f  E. 

Then the sequence o f  orders o f  zeros at P o f  elements o f  (~- must  contain g - 1 

and cannot contain g - 2 and hence consists o f  

[0,1 . . . . .  g - 3,g - 1}. 

PROOF. For (a) let us consider the case of  a hyperelliptic surface of  genus 3 

(with hyperelliptic involution H ) .  I f  the anti-invariant differential ~0 vanished at 

P to order 4, it would also vanish to the same order at ( H o  E ) ( P ) ;  obviously 

impossible (recall that H o E is fixed point free). If  S has genus 2, then "the" E-anti- 

invariant differential is (Ho  E)-invariant  (H,  as before, the hyperelliptic involu- 

tion) and hence vanishes at the two fixed points of  H o E which are interchanged 

by E. The rest of  the lemma consists of  restatements of  earlier results. 

LEMMA 9. (a) The weight o f  a f i xed  point  P o f  E with respect to the space of  

anti-invariant differentials is either (g - 1)(g - 2) /2  o r  ( g 2  _ 3g + 6)/2.  The 
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former weight occurs when p2g-2 is not canonical and the latter occurs when 

p2g-2 is canonical. 

(b) The weight o f  a Weierstrass point Q that is not a fixed point o f  E with re- 

spect to the space of  anti-invariant differentials is 1. 
(c) Let Q E S be arbitrary. Then Q2g-2 is canonical i f  and only i f  Q2g-2/ 

Pl P2 " " P2g-2 is principal. 

PROOF. Left to the reader. 

What  are the classical Weierstrass points (with respect to 6t) on S? We should 

be able to describe them in terms of quantities on the torus X. The Wronskian W 

with respect to all the differentials on S is a holomorphic g(g + 1 ) /2  differential. 

This differential is invariant if g is even and anti-invariant if g is odd. Its zeros are 

the Weierstrass points of  S. Let pj = ordpj  IV, j = 1 . . . . .  2g - 2. It is easy to show 

(since the invariant differential has a simple zero at P)  that ~j = (g - 3)(g - 2) /2  

or ~j = 2 + (g - 3)(g - 2) /2.  The lower value always applies when S is hyper- 

elliptic and hence g = 3 or g = 2. Let Q1 . . . . .  Q,,,E(QI) . . . . .  E (Q, )  be the other 

zeros of  W listed according to their multiplicities. Then ~}-g_7 2 vj + 2n = g (g2 _ 1). 

Assume now that g is odd. The projection p (W) of  W to X has order/~j = 

~i/2 - g (g + 1 ) /4 at p (Pj) ,  j = 1 . . . . .  2g - 2 and vanishes at p ( Q i ) . . . . .  p (Q,).  

We note that the possible values of  #i are 3(1 - g) /2  and (5 - 3g) /2 .  (These are 

(negative) integers only when g is odd, as expected.) We conclude that the integral 

divisors IIfg=-;2p(Pj) -~'j and I I~ '=I#(Qj)  have the same degree (n) and are 

equivalent. 

Assume next that g is even. Then I4 "2 is an invariant differential and the cor- 

responding analysis with #j = ordptp j )p(W 2) shows that  I-/}g~ -2 p(Pj)-~'J and 

i-ij~=lp (Qj)2 are equivalent divisors. The only possible values for #j are 3 - 3g 

and 5 - 3g. 

REMARK. The above relations may also be derived by projecting the functions 

I4:/0 g(g+l)/2 for g odd and W2/O g(g+u for g even to X, where 0 is a non-trivial E- 

invariant differential on X. 

As an application we see that for genus 2, the six Weierstrass points on S can be 

paired: QI,E(QI) ,  Q2,E(Q2), Q3,E(Q3). The product of  the cubes of  the two 

branch values p (PI)3p (p2)3 is equivalent to the product of  the squares of  the im- 

ages of  the Weierstrass points p (QI)2p (Q2)2p(Q3)2. As another application we 

can consider the case of  a hyperelliptic surface of  genus 3, where we find that the 

Weierstrass points come in pairs Qj,E(Qi),  j = 1 . . . . .  4, and the product of  the 
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cubes of the four branch values II j~  t, (P2) 3 is equivalent to the product of cubes 
of the image of the Weierstrass points 1I~_~ p(Qj)3. 

The Weierstrass points for (~- are particularly easy to describe in the case we 

are considering. 

PROPOSITION 2. Choose a special Weierstrass (for (~-) point R~ E S. Let us 

normalize the torus X so that p(R~) = O, the origin. Let [R~ . . . . .  Rm;O < m <_ 

2(g - 1) 2 1 be the lifts to S of  the points o f  order g - 1 on the torus. Each Ri in 

this list is a Weierstrass point for  the space o f  anti-invariant differentials. It is a 

simple Weierstrass point i f  it is not a fixed point o f  E; otherwise it is a point of  

weight (g - 1)(g - 2) /2  + 2. The fixed points o f  E not in the above list are the 

remaining Weierstrass points, each of  weight (g - 1 ) (g - 2)/2.  

PROOF. The special Weierstrass points for ¢t- are precisely those points Q in 

S for which there exists a o~ o E t~ with (00 o) = Qg-1E(Q)g-~. Such an o~ e is auto- 

matically in ~ - .  Now the E-invariant function ¢0Q/0~R 1 projects to a function on 

the torus with divisor p(Q)g-l/p(Rl)g-1. Hence if p(R1) = 0, we see that p (Q)  is 

a point of  order g - 1 on X. Conversely, every point of  order g - 1 on X lifts to 

a special Weierstrass point on S. The remaining Weierstrass points of (~- must be 

fixed points for E and not special. 

REMARKS. (1) It is of  some interest to compare this last result with the situa- 

tion in Theorem 4. The normalization chosen p (R1) = 0 for the torus is equiva- 

lent to choosing x0 = p (QI). Thus the origin is a zero of the multivalued function. 

We therefore have 

0 ( - ~  Cbxo(Xl'' "x2k) + Kxo + hp) = O. 

In genus 1, the theta function has exactly one zero at the point (1 + z ) /2  = Kxo 

for every choice of  x0. Hence we can conclude that -~¢pxo(Xl.. .x2k) + h, = 0 

where Xo = p(QI) and Ql is a special point. 

(2) Consider the case of odd genus g. Each point Ri gives rise to a canonical di- 

visor Rg-IE(Ri)  g-I and thus to the half canonical divisor R~g-I)/2E(Ri) ~g-1)/2. 

These half canonical divisors give rise to points of order two in J(S) ,  

ei = tbxo(R}g-l) /2E(Ri)  (g-l)/2) q- Kxo. 

These points of  order 2 are independent of  the choice of base point x0 and the 

theta function vanishes at these points of  order 2 to even or odd order depending 

on the index of  specialty of  the half canonical divisor used. 
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(3) Let us choose the indices so that 

p(R2)  (g-l)/2, p (R3)  (g-i)/2 and p(R4) ts-~/2 

are the 3 points o f  order 2 on X (in addition to the origin). It follows that 

(RIR2R3R4)tg-I)/2E(RIRER3R4) tg-l~/2 is the divisor of  a holomorphic quadratic 

differential on S. 

8. Special choices for the branch points 

In this section we study some special two-sheeted covers of  tori which we con- 

struct by properly choosing the branch values of  the cover. In this way we shall de- 

termine what it means for a fixed point of  E to be a special Weierstrass point of  

the space of  anti-invariant differentials (hence of  weight (gZ _ 3g + 6) /2) .  We 

shall be able to determine which covers of  genus 3 are hyperelliptic and how to con- 

struct these surfaces f rom the torus. 

Let X be a torus with a fixed point x0 E X corresponding to the origin in the 

usual representation of  X as the plane factored by the lattice generated by 1 and 

the point r in the upper half plane. The torus X has a unique involution ak fixing 

x0 = 0. It is given by z ~ - z .  The other 3 fixed points of  ~k are the half  periods 

1/2, r /2  and (1 + r ) / 2 .  For g __ 2, let us now choose 2g - 2 points on the torus 

by first selecting g - 1 distinct points xi, i = 1 . . . . .  g - 1, none of these of  order 

2 (that is, none fixed by ~) and their images under the involution xi = ~(Xi-g+1 ), 

i = g . . . . .  2g - 2. 

Consider now a two-sheeted cover of  X branched over these 2g - 2 points. There 

are in fact four possible covers which we can construct. Fix one such cover, which 

we shall denote by S. We already know that S carries a conformal  involution E 

with S / ( E )  = X and E has 2g - 2 fixed points which project to the points xi, i = 

1 , . . .  ,2g - 2, on X. We claim that the involution ff of  X lifts to S. To verify this 

assertion, we study the action of  ~k on the fundamental  group of  X punctured at 

the 2g - 2 points xi. 

Let 6 ~ be the period parallelogram for the torus X with vertices 

I - 1 / 2  - r / 2 , 1 / 2  - r / 2 , 1 / 2  - r / 2 , - 1 / 2  + r /21.  

We let the origin correspond to the base point o f  the fundamental  group of  the 

punctured torus (the punctures are points in 6~). Let 3' and ~5 be curves through the 

origin that are invariant under if, avoid all the punctures, and project to a canon- 

ical homology basis on the (unpunctured) torus. It  is easy to choose such curves. 
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We may and do assume that 7 (respectively, 6) runs f rom - 1 / 2  ( - z / 2 )  to 1/2 

( r /2 ) .  For i = 1 . . . . .  g - 1, choose the curves ci as in §2. For i = g . . . . .  2g - 2, 

we let ci = 4, (ci-g+l). The 2g curves we have constructed generate the fundamen- 

tal group of the punctured surface. 

Let h be the defining homomorphism from the fundamental group of  the punc- 

tured torus into Z2 for the cover p : S ~ X. Recall that h(ci) = 1 for each i and 

that h is arbitrary on 7 and 6. Note ~b(7) = 7 - I  and t.b(6) = 6 -1. Hence h .  ~b = - h  

and the involution ~b lifts to every cover S. Let • be a lift of  ~b to S. Since ~b. 0 = 

0 * 9 and 0 * E = 0 both E* 't, and ~/* E are also lifts of  ~b and E .  q / =  g ' .  E. Now 

if Q is a fixed point of  ,I,, then o(Q) is a fixed point of  ~b. It follows that the in- 

volution xI, has 0, 2, 4, 6 or 8 fixed points. To be specific, let us choose a point 

Qo E S with o(Qo) = 0 and let us choose 9 to satisfy xO(Qo) = Qo. Thus • fixes 

the two points over the origin (and ,I , .  E interchanges them). To see whether the 

two points above another half period, say x, are fixed by xI,, we join the origin to 

the point x by a smooth curve in the punctured torus. Then this curve followed by 

its image under ~b is a closed curve through the origin on the punctured torus. The 

two points lying over x are fixed by xI, if and only if the curve we have constructed 

is in the defining subgroup of the cover. It thus follows that the two points lying 

over 1/2 are fixed by • (and hence interchanged by • , E )  if and only if h (7 )  = 

0, and the two points lying over r / 2  are fixed by 9 if and only if h(6) = 0. A curve 

f rom - ( r  + 1)/2 to ( r  + 1)/2 through the origin and invariant under ~b may be 

chosen so that it is homotopic to 7 followed by 6 followed by one half (g - 1) 

of  the c,-. Hence the two points lying over ( r  + 1)/2 are fixed provided h (7 )  + 

h(6) + g - 1 = 0. Hence for g odd when h (7 )  = h(6) and for g even when 

h (7) q: h (6). We summarize our construction in 

LE~IA 10. (a) I f  g is even, then ~1 has 2 or 6 fixed points. The number of fixed 

points for the corresponding map • * E are 6 and 2. 

(b) I f  g is odd, then qg has 4 or 8 fixed points. The number of fixed points for 

the corresponding map • * E are 4 and O. 

(c) For g = 2 and g = 3, the surface S is hyperelliptic if  and only if  qg has the 

maximum number of fixed points (6for genus 2 and 8for genus 3) in which case 

it is the hyperelliptic involution. 

In the above construction our only condition on the points xi was that none be 

of  order 2. The points may be chosen to be of  order (g - 1) and not of  order 2 

provided, of  course, that g > 3. In this case, we conclude that the lifts of  these 

points would be fixed by E and also special Weierstrass points for ff~. I f  we give 
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up the ability to lift the involution ~b of X to S, then we can allow the xi to be 

points of order 2. Consider the case of genus 3. The 4 bitangents correspond to 4 

pairs of special points on S. By properly choosing the branch values on X, each 

such special pair may or may not correspond to a degenerate bitangent (by vary- 

ing the complex structure, the two special points not fixed by E may be forced to 

coalesce to a single fixed point of E). We have returned to the situation that moti- 

vated this work. It is a good place to end this chapter. 

Note added in proof (April 15, 1991). After compilation of this paper one of the 

authors recalled a beautiful book that both authors had previously read with great 

pleasure. The reader is asked to consult §5.2 (entitled "Why twenty-eight bitan- 
gents") of C. Herbert Clemens' book A Scrapbook of Complex Curve Theory, Ple- 

num Press, New York, 1980) for a further introduction to the problem that 

motivated this work. 
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